(n,)
1 2 3 4
| import numpy as np shape_demo = np.array([1,2,3,4]) print(shape_demo) print(shape_demo.shape)
|

(n,1)
1 2 3
| shape_demo_1 = np.array([[1],[2],[3],[4]]) print(shape_demo_1) print(shape_demo_1.shape)
|

(2,4)
1 2 3
| shape_demo_2 = np.array([[1,2,3,4],[5,6,7,8]]) print(shape_demo_2) print(shape_demo_2.shape)
|

sklearn datasets.make_regression
1 2 3 4 5 6
| import matplotlib.pyplot as plt import numpy from sklearn import datasets
regressionData = datasets.make_regression(10, 1, noise=10)
|
type of regressionData is tuple(2 items)
(ndarray with shape (10, 1), ndarray with shape (10,))



ref [Day27]機器學習:建立線性迴歸資料與預測!
ref numpy.array 的shape属性理解
ref python 里 np.array 的shape ( ,)与( ,1)的区别